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California Drought

History of Droughts in California Worst California droughts over last 100 years
Source: West Wide Drought Tracker Source: West Wide Drought Tracker
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California Drought

3 Years
Ago

Intensity: D0 Abnormally Dry D1 Moderate Drought D2 Severe Drought
Bl D3 Extreme Drought Bl D4 Exceptional Drought



Environmental Impacts of Drought

Short-term:
o Detriments to Hydropower production and recreation

o Low farm yields

Long-term:
o Groundwater storage lost
° Food and water shortages

o Qver-pumping can cause permanent groundwater loss, land elevation sinking, and
seawater intrusion

o Wildfire risks

2015 drought season estimated to have cost more than $2.2 billion in economic loss.



El Nino

Global periodic phenomenon linked to high
ocean temperatures near South American
coast

In California, manifests as a season of extreme
rainfall, flooding, and warm temperatures.

1997-1998 El Nino Season is estimated to have
caused $25 billion in damages to the entire
country.
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2015-2016 El Nino Season

Southern Oscillation Indicies
SOI: Tahiti - Darwin
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ERE |
California stands to get ‘Shasta L | \ %
above normal amounts ‘i | 2 A |

of rain from January to
March 2016 because of
El Nifio.

Chance of above
normal precipitation

33% — 39%
. 40% - 49%
Bl 50% - 59%
Wl 60% -69%

Sources; NOAA, Climate Prediction Center
@latimesgraphics




Questions

=Can machine learning techniques give us:
= Autocorrelative patterns?
" nsight on physical phenomenon?




Neural networks

=“Universal Approximators”

"|Inspired by topology of human brain

=Actively explored space of training algorithms to configure a
network to approximate any function to arbitrary accuracy




Feed-Forward Neural Networks

"Input comes in through input layer,
and information proceeds through to
the output.

=Connections from layer to layer have
different strength and transfer
functions

=“Training” involves selecting how
strong each connection should be.




Issues

=Search space very large and erratic compared to what common sense dictates

=Strong potential of overfitting A y A
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Recurrent Neural Networks

*Trainable state machines

*Universal approximation of processes, not SR LAY HIDDEN LAYER
functions |

*Nodes receive delayed signals from their past
outputs

*Much more suited for time series, and
topology is much closer to reality.

*Much less parameters; “recentness” built in.

*Training and prediction done over a series, not
over a data point.




Ability to look at physical phenomenon
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Cell that is sensitive to the depth of an expression:
Cell that robustly activates inside if statements: #ifdef CONFIG_AUDITSYSCALL
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static inline int audit_match_class_bits{(int class, u32z *mask)
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Andrej Karpathy, “The Unreasonable Effectiveness of Recurrent Neural Networks”
May 21 2015 http://karpathy.github.io/2015/05/21/rnn-effectiveness/



Initial Results

s e aetant Taneers i e =|nitial results demonstrated correlation,
= | making this avenue apparently worth
Projected (R°=0.21) | .
I pursuing.
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" / | =Strong signs of overfitting.
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o =Parameter reduction (and removing hidden
/ﬂ layers) tended to improve results, but hit a
_ [ wall.
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Combatting Overtfitting with Noise

=Realization: we are trying to model a distribution, not a function.

=*Train with noise! Forces robustness.

"Instant decreases in overfitting observed, and higher correlations.




Combatting overfitting with Dropout

=Train handicapped versions of networks in
hopes that they find different features, and a
way to work together despite missing neurons.

=|nspired by sexual selection in evolution.
Power in variation.

=QOverall effect is similar to running several
networks at once, within only one network!

a) Standard Neural Net (b) After applying dropout.



Increasing Expressivity with Rectified
Linear Unit Activation Functions

=“Activation functions” determine neuron firing
behavior

=Originally began with the classic logistic
function:
1

I ]
— Softplus
4- —  Rectifier
1+e*

= Qutputs range between 0 and 1

= Gradient vanishes dramatically at high inputs

5,
=Switched according to new research showing
success of rectifiers as activation functions

= Qutputs are unbounded and positive.
= Gradient expressed at high inputs

D //
= Allows neurons to be more expressive in what
information they pass down.




Predicting the Future

=Network is shaped to predict the next month of climate
data/indices. But can it predict long-term?

=“Leapfrogging into the future”.

="Add noise to get confidence intervals.




Node Activation Maps

=Developing visualizations to peek into the mind of
networks to find new potential phenomenon

=*Might yield:
= Features that correspond to known or unknown physical
phenomenon

= Correlate with outside data and find any links

= The ability to identify weak nodes or overly correlated
nodes, and delete them: “brain surgery”

= A way to gauge the health of a neural network.
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Actual and Projected Climate Indices
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Validation

Actual and Projected Climate Indices

== Act Prec (4-6) — Proj Prec (4-6) = =
Act Temp (4-6) — Proj Temp (4-6) - -
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Prediction

Actual and Projected Climate Indices
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Historical El Nino Z Indices

Peak Anomaly Peak Anomaly Annual Anomaly
Month

1957-1958 3.03 April 0.50
1982-1983 2.22 April 1.15
1997-1998 4.13 February 1.10
2009-2010 1.10 January 0.45
2015-2016* 0.72 March 0.24

* Projected



2012-2016 Annual Z-Index Anomalies

2012 -0.93
2013 -1.30
2014 -1.17
2015 -0.85
2016* 0.24

* Projected



Answers?

=Definitely evidence of predictive power with high correlation (.5-.7 depending on the index
being predicted).

=Drought conditions always predicted accurately.

"What’s in the future?
= Looks like milder, average-level precipitation with drought indices moving towards non-drought.

= Predicting a steady climb out of drought




