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_et’s talk about Filters




The problem with filters

Toaster Inkwell

Poprocket Nashville

getglasses.com.au



Presenter
Presentation Notes
No unifying framework; ad-hoc.  Cannot be analyzed meaningfully across different types as composition.  Multiple implementations means more bugs, optimizations yield less returns.  Must be a better way.


Categories

Morphisms

Objects

Composition



Presenter
Presentation Notes
Once you get a category with composition, you can do lots of crazy analysis


Functors

*Objects to Objects
*Morphisms to Morphisms




Ex: Infinite List Functor
LX) =XxV

X to infinite lists of things In X

92 4,9 .8 75 -3, ... frX=Y



Comonads

1. Extract e:WX) > X
2. Duplicate & :W(X) - WW (X))
3. Laws € o0 = id, etc.




Cokleisli Arrows

f:WX)->Y g:w)-~Z

a4 N
gof:WX)->Z

Comonads only!

< 4



Presenter
Presentation Notes
Actually a very surprising result that these can compose meaningfully if and only iff W is a comonad.
New composition => new category => opens up worlds of analysis


Extension

f:WX)-Y

frw(X) -»> W)



Presenter
Presentation Notes
The fact that you can do this in a meaningful way is also surprising


Functor 1: “Image with Focus”

1(X) = 7% x X%
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Position-Aware Transformation
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Affine Transformation Matrix




Compose Affine

f 9 > fog

Encode
Encode

v

\/
Compose Cokleisli

ar, g T Uf °lg = Ufog



Presenter
Presentation Notes
Pick the path that’s most efficient for you!


Functor 2: “Local Neighborhood”
G(X) = X%
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|_ocal/Relative Transformations
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Kernel/Convolution Matrix
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Convolve Kernels
f,9 - [ *g
)

Encode
Encode
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\/
Compose Cokleisli

Kfr Kg ~ Ky © Kg = Kfxg




Extensions of | are Decoded Filters

f:I1(X)->Y - [ 1(X) = I(Y)

’A stays same




Commutation Abounds

f,9

Compose Cokleisli




Decoded Neighborhoods

f:6(X)-Y

“Globalization”, T’

v




- ) (F(f) O F(g))
f.g

G/oba/ize, extend, compose



Extension, Globalization are Cheap

*Written once: less bugs

*Optimize once, unlimited return on performance

*Trivially parallelizable

*Globalization can handle boundary conditions, low-level




Generalization

_ Application

1 Audio, Time signals
2 Images
3 Video

1000+ Difference Equations




In Conclusion

*Better math

*Better engineering
*Better development process
*Better world
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