
Functors, Comonads, 
and Digital Image 
Processing
JUSTIN LE, CHAPMAN UNIVERSITY SCHMID COLLEGE OF 
SCIENCE AND TECHNOLOGY



Let’s talk about Filters



getglasses.com.au

The problem with filters

Presenter
Presentation Notes
No unifying framework; ad-hoc.  Cannot be analyzed meaningfully across different types as composition.  Multiple implementations means more bugs, optimizations yield less returns.  Must be a better way.



Categories

Objects Morphisms

Composition

ℤ ℝ

ℙ
(people)

(integers)

(real numbers)

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∶ ℝ → ℤ

𝑎𝑎𝑎𝑎𝑎𝑎 ∶ ℙ → ℝ

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∘ 𝑎𝑎𝑎𝑎𝑎𝑎 ∶ ℙ → ℤ
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∘ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝 )

𝒮𝒮
Set

Presenter
Presentation Notes
Once you get a category with composition, you can do lots of crazy analysis



Functors
•Objects to Objects
•Morphisms to Morphisms



Ex: Infinite List Functor

𝐿𝐿 𝑋𝑋 = 𝑋𝑋ℕ
X to infinite lists of things in X

92 4, 9, 8, 75, -3, ...
∈ ℤ ∈ 𝐿𝐿(ℤ)

𝑓𝑓 ∶ 𝑋𝑋 → 𝑌𝑌
𝐿𝐿 𝑓𝑓 ∶ 𝐿𝐿(𝑋𝑋) → 𝐿𝐿(𝑌𝑌)



Comonads
1. Extract 𝜖𝜖 ∶ 𝑊𝑊 𝑋𝑋 → 𝑋𝑋
2. Duplicate 𝛿𝛿 ∶ 𝑊𝑊 𝑋𝑋 → 𝑊𝑊(𝑊𝑊 𝑋𝑋 )
3. Laws 𝜖𝜖 ∘ 𝛿𝛿 = 𝑖𝑖𝑟𝑟, etc.

𝜖𝜖 [4, 9, 8, 75,−3. . ] = 4 𝛿𝛿 [4, 9, 8, 75,−3. . ] = ? ? ?

Infinite List Functor



Cokleisli Arrows

𝑓𝑓 ∶ 𝑊𝑊 𝑋𝑋 → 𝑌𝑌 𝑎𝑎 ∶ 𝑊𝑊 𝑌𝑌 → 𝑍𝑍

𝑎𝑎 ∘ 𝑓𝑓 ∶ 𝑊𝑊 𝑋𝑋 → 𝑍𝑍
Comonads only!

Presenter
Presentation Notes
Actually a very surprising result that these can compose meaningfully if and only iff W is a comonad.New composition => new category => opens up worlds of analysis



Extension

𝑓𝑓 ∶ 𝑊𝑊 𝑋𝑋 → 𝑌𝑌

𝑓𝑓∗:𝑊𝑊 𝑋𝑋 → 𝑊𝑊(𝑌𝑌)

Presenter
Presentation Notes
The fact that you can do this in a meaningful way is also surprising



Functor 1: “Image with Focus”

𝐼𝐼 𝑋𝑋 = ℤ2 × 𝑋𝑋ℤ2

5 ( 5,2 ,

⋱ ⋮ ⋮ ⋮ ⋰
⋯ 7 3 19 ⋯
⋯ 22 4 120 ⋯
⋯ 8 79 1 ⋯
⋰ ⋮ ⋮ ⋮ ⋱

)

∈ ℕ ∈ 𝐼𝐼(ℕ)



∈ 𝐼𝐼( 0,𝑁𝑁 ⊂ ℕ)



Position-Aware Transformation

0 −1 𝑤𝑤
1 0 0
0 0 1

Affine Transformation Matrix

𝐼𝐼 ℕ → ℕ



𝑓𝑓,𝑎𝑎

𝛼𝛼𝑓𝑓,𝛼𝛼𝑔𝑔

𝑓𝑓 ∘ 𝑎𝑎

𝛼𝛼𝑓𝑓 ∘ 𝛼𝛼𝑔𝑔 = 𝛼𝛼𝑓𝑓∘𝑔𝑔

Compose Affine

Compose Cokleisli

Encode
Encode

Presenter
Presentation Notes
Pick the path that’s most efficient for you!



Functor 2: “Local Neighborhood”

G 𝑋𝑋 = 𝑋𝑋ℤ2

5
⋱ ⋮ ⋮ ⋮ ⋰
⋯ 7 3 19 ⋯
⋯ 22 4 120 ⋯
⋯ 8 79 1 ⋯
⋰ ⋮ ⋮ ⋮ ⋱

∈ ℕ ∈ 𝐺𝐺(ℕ)



Local/Relative Transformations

0 −1 0
−1 5 −1
0 −1 0

Kernel/Convolution Matrix

⋱ ⋮ ⋮ ⋮ ⋰
⋯ 7 3 19 ⋯
⋯ 2 5 6 ⋯
⋯ 8 1 9 ⋯
⋰ ⋮ ⋮ ⋮ ⋱

13
ℤ𝐺𝐺(ℤ)



𝑓𝑓,𝑎𝑎

𝜅𝜅𝑓𝑓, 𝜅𝜅𝑔𝑔

𝑓𝑓 ∗ 𝑎𝑎

𝜅𝜅𝑓𝑓 ∘ 𝜅𝜅𝑔𝑔 = 𝜅𝜅𝑓𝑓∗𝑔𝑔

Convolve Kernels

Compose Cokleisli

Encode
Encode



Extensions of I are Decoded Filters

𝑓𝑓 ∶ 𝐼𝐼 𝑋𝑋 → 𝑌𝑌 𝑓𝑓∗ ∶ 𝐼𝐼 𝑋𝑋 → 𝐼𝐼(𝑌𝑌)

𝑓𝑓∗ ∶ 𝑋𝑋ℕ2 → 𝑌𝑌ℕ2
Classical image filter

focus stays same



Commutation Abounds

𝑓𝑓,𝑎𝑎

𝑓𝑓∗,𝑎𝑎∗

𝑓𝑓 ∘ 𝑎𝑎

𝑓𝑓∗ ∘ 𝑎𝑎∗ = 𝑓𝑓 ∘ 𝑎𝑎 ∗

Compose Cokleisli

Compose Normally

Extend Extend



Decoded Neighborhoods

𝑓𝑓 ∶ 𝐺𝐺 𝑋𝑋 → 𝑌𝑌

Γ 𝑓𝑓 ∶ 𝐼𝐼 𝑋𝑋 → 𝑌𝑌

“Globalization”, Γ

Γ(𝑓𝑓)∗ ∶ 𝑋𝑋ℕ2 → 𝑌𝑌ℕ2
Classical image filter



𝑓𝑓,𝑎𝑎

Γ 𝑓𝑓 ∗ ∘ Γ 𝑎𝑎 ∗

Γ 𝑓𝑓 ∘ 𝑎𝑎 ∗

Γ 𝑓𝑓 ∘ Γ g ∗Globalize, cokleisli compose, extend



Extension, Globalization are Cheap
•Written once: less bugs
•Optimize once, unlimited return on performance

•Trivially parallelizable
•Globalization can handle boundary conditions, low-level



Generalization

𝐼𝐼𝑛𝑛 𝑋𝑋 = ℤ𝑛𝑛 × 𝑋𝑋ℤ𝑛𝑛

𝐺𝐺𝑛𝑛 𝑋𝑋 = 𝑋𝑋ℤ𝑛𝑛

n Application
1 Audio, Time signals

2 Images

3 Video

1000+ Difference Equations



In Conclusion
•Better math
•Better engineering
•Better development process
•Better world


	Functors, Comonads, and Digital Image Processing
	Let’s talk about Filters
	The problem with filters
	Categories
	Functors
	Ex: Infinite List Functor
	Comonads
	Cokleisli Arrows
	Extension
	Functor 1: “Image with Focus”
	Slide Number 11
	Position-Aware Transformation
	Slide Number 13
	Functor 2: “Local Neighborhood”
	Local/Relative Transformations
	Slide Number 16
	Extensions of I are Decoded Filters
	Commutation Abounds
	Decoded Neighborhoods
	Slide Number 20
	Extension, Globalization are Cheap
	Generalization
	In Conclusion

