Functors, Comonads,
and Digital Image
Processing

JUSTIN LE, CHAPMAN UNIVERSITY SCHMID COLLEGE OF
SCIENCE AND TECHNOLOGY

_et’s talk about Filters

The problem with filters

Toaster Inkwell

Poprocket Nashville

getglasses.com.au

Presenter
Presentation Notes
No unifying framework; ad-hoc. Cannot be analyzed meaningfully across different types as composition. Multiple implementations means more bugs, optimizations yield less returns. Must be a better way.

Categories

Morphisms

Objects

Composition

Presenter
Presentation Notes
Once you get a category with composition, you can do lots of crazy analysis

Functors

*Objects to Objects
*Morphisms to Morphisms

Ex: Infinite List Functor
LX) =XxV

X to infinite lists of things In X

92 4,9 .8 75 -3, ... frX=Y

Comonads

1. Extract e:WX) > X
2. Duplicate & :W(X) - WW (X))
3. Laws € o0 = id, etc.

Cokleisli Arrows

f:WX)->Y g:w)-~Z

a4 N
gof:WX)->Z

Comonads only!

< 4

Presenter
Presentation Notes
Actually a very surprising result that these can compose meaningfully if and only iff W is a comonad.
New composition => new category => opens up worlds of analysis

Extension

f:WX)-Y

frw(X) -»> W)

Presenter
Presentation Notes
The fact that you can do this in a meaningful way is also surprising

Functor 1: “Image with Focus”

1(X) = 7% x X%

e 7 3 19 ...
5 ((52),]- 22 4 120 -
8 79 1

€N e I(N)

LE BLLLLLLELLLELLL

J_E el L L L L L L
AT I TN AN NN NN SR
L L L L LY L s

' LLEEE
|y

—

e I([0,N] € N)

Position-Aware Transformation

ol R, T"“ 5 -"_l-:i_;
o, N s

0 -1 w]

0 0 1.

Affine Transformation Matrix

Compose Affine

f 9 > fog

Encode
Encode

v

\/
Compose Cokleisli

ar, g T Uf °lg = Ufog

Presenter
Presentation Notes
Pick the path that’s most efficient for you!

Functor 2: “Local Neighborhood”
G(X) = X%

e 7 3 19 ...
5 e 22 4 120 -
.8 79 1

eN € G(N)

|_ocal/Relative Transformations

[IR s e o
= = e e . T

0 -1 0]

— -1 5 -1[—
0 -1 0.

Kernel/Convolution Matrix

1 G(Z) Z.

_ U1 W

Convolve Kernels
f,9 - [*g
)

Encode
Encode

v

\/
Compose Cokleisli

Kfr Kg ~ Ky © Kg = Kfxg

Extensions of | are Decoded Filters

f:I1(X)->Y - [1(X) = I(Y)

’A stays same

Commutation Abounds

f,9

Compose Cokleisli

Decoded Neighborhoods

f:6(X)-Y

“Globalization”, T’

v

-) (F(f) O F(g))
f.g

G/oba/ize, extend, compose

Extension, Globalization are Cheap

*Written once: less bugs

*Optimize once, unlimited return on performance

*Trivially parallelizable

*Globalization can handle boundary conditions, low-level

Generalization

_ Application

1 Audio, Time signals
2 Images
3 Video

1000+ Difference Equations

In Conclusion

*Better math

*Better engineering
*Better development process
*Better world

	Functors, Comonads, and Digital Image Processing
	Let’s talk about Filters
	The problem with filters
	Categories
	Functors
	Ex: Infinite List Functor
	Comonads
	Cokleisli Arrows
	Extension
	Functor 1: “Image with Focus”
	Slide Number 11
	Position-Aware Transformation
	Slide Number 13
	Functor 2: “Local Neighborhood”
	Local/Relative Transformations
	Slide Number 16
	Extensions of I are Decoded Filters
	Commutation Abounds
	Decoded Neighborhoods
	Slide Number 20
	Extension, Globalization are Cheap
	Generalization
	In Conclusion

