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2012 CALIFORNIA DROUGHT

• The 2012-present California Drought has 
been the most extreme drought in the 
region’s recorded history.

• Short-term impacts:

• Hydropower, recreation, farm yields

• Long-term impacts:

• Permanent groundwater loss, wildfire risk, land 
elevation sinking, seawater intrusion, ecological 
disruption

• $2.2 billion dollars of economic loss in 2015



EL NINO SOUTHERN OSCILLATION

• ENSO is a global phenomenon impacting different regions in the world in 

different ways.

• In California (and most of the US), El Nino seasons manifest as periods of 

extreme rainfall, flooding, and warm temperatures

• Strong El Nino seasons bring economic damage

• In 1997-1998, the US suffered $25 billion in economic loss.



2015-2016 EL NINO SEASON

How does El Nino manifest?  What did we see going into 2016?



LET’S GO BACK TO SUMMER 2015

• In the weather community and popular 

media, the 2015-2016 El Nino Season 

was hailed as a savior to bring 

California out of drought.

• With SOI (Southern Oscillation Index) 

and ONI (Oceanic Nino Index) 

indicated strong seasons, many 

forecasted extreme precipitation.

• But what happened?



WHAT HAPPENED IN CALIFORNIA 
WINTER 2016-2015?

• Nothing.

• Well, almost nothing.

• Disappointing rainfall, and one of the driest winters in California history.

• Reservoirs continue to deplete

• Drought outlook has not changed.

• Did anyone see this coming?



QUESTIONS

• Can current Machine Learning research supervised classifiers give us any:

• Predictive power on atmospheric phenomenon?

• Physical insight into the phenomenon at work?

• Can we apply them to projections on the California Drought?



ARTIFICIAL NEURAL NETWORKS

• Traditionally used as “black box” models to 

approximate any arbitrary function 𝑓 ∶ ℝ𝑁 → ℝ𝑀

• Feeds input vector ℝ𝑁 through a series of 

parameterized linear and non-linear transformations

• Gradient descent-based stochastic techniques are 

used to search the parameter-space for optional 

configuration to approximate arbitrary functions.

• Cybenko and Hornik et. al. show that ANNs can 

approximate any function to arbitrary precision.



RECURRENT NEURAL NETWORKS

• Traditional “feed-forward” neural networks can model 
static functions, but in weather, we often want to model 
dynamic processes.

• Recurrent neural networks are a modification to 
traditional networks: instead of being parameterized 
functions, they are parameterized state machines.

• Input and internal state are fed through a series of 
parameterized linear and non-linear transformations to 
produce “next result” and new internal state.

• Gradient descent also employed to chose parameters.



RECURRENT NEURAL NETWORKS AS 
GENERATIVE MODELS

• Recurrent Neural Networks have had success in modeling dynamic processes 

and in generative models.

• We can supply (monthly) climate indices and weather data history to the 

model, and ask it to predict the next month. 



INTERNAL ACTIVATION YIELDS SYSTEM 
INSIGHT

• Karpathy et. al. attempted to use RNNs to 

predict the next character in a body of text, and 

to generate entire passages.

• By tracking the internal progress of data 

transformations, he noticed that certain state 

components represented certain phenomenon in 

the text.

• These state components were never explicitly 

programmed to behave in this way – they were 

automatically derived through stochastic gradient 

descent!



MODEL DATA

• We attempted to train the model as a purely autocorrelative model to predict the 

next month of weather indices based on recent observed indices.

• The prediction is then taken as “observed data” and used to forecast two months ahead.

• The process is repeated to extend the model to be able to look several months into the 

future.

• NOAA NCDC’s nClimDiv data set for Southern California (US climate division 04-

06) was used, which provided historical data on climate and weather indices for the 

previous 150 years.

• After training, model is refined and input predictors are eliminated to increase 

model fitness.



PALMER Z INDEX

• After investigating the success of the model based on input data, we decided to 

keep only three climate indices: (normalized) Temperature, Precipitation, and 

Palmer Z-Index (PZI).

• Eventually, only PZI was kept.

• The Palmer Z index (PZI) is an aggregate index based on monthly soil 

moisture, evapotranspiration, potential run-off, and other moisture-related 

indicators.

• We found that the index successfully captures drought-like conditions and also 

monthly precipitation.



RESULTS (TRAINING CONVERGENCE)

Model successfully converges on training data, especially for the 

critical1997-1998 El Nino season.



STRUGGLES

• The universal enemy of neural networks is overfitting, 
due to the sheer number of model parameters (often in 
the thousands or millions). Combatting overfitting is the 
subject of much active ANN research.

• We applied several techniques to mitigate overfitting, 
including:

• Noise injection

• Stochastic gradient descent

• “Dropout”-based techniques for ensemble simulation

• Gradient-preserving activation functions

• Eliminating predictands

Unsuccessful validation of an overfitted model



RESULTS (VALIDATION)

• Model validates well on a data set unseen during 

training, with p value lower than one in one 

million for three month ahead predictions.

• Correlation is significantly higher than simple 

moving-average or delay models.

• In the end, the model only needed to see past 

PZI to be able to succesfuly project on future 

PZI.



PROJECTIONS

Applying the model to the future, it predicts continuing drought (and, consequentially, low precipitation) 

into mid 2016.  Shown here is the comparison to the historic 1997-1998 El Nino Season.  These projects 

were made February 2016.  Available data from Mar to Jun confirm these projections.



INTERNAL NODE ACTIVATION

• With RNN’s, we have the privilege of being able 
to “peek inside” the internal state of the 
network as it processes data.

• Here shown are the activations of internal 
“neurons” in a trained network over time.  Each 
neuron models a specific aspect of the physics 
the network is attempting to model, and its 
roles are automatically defined through the 
stochastic gradient descent.

• The most obvious pattern is the redundancies 
that the network builds to be robust to errors 
and noise.

• What do these regions of high and low 
activation represent?  What mysteries are 
hidden in their structure?  Curiosity abounds.
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CONCLUSIONS

• The model was able to predict the dry season of continuing drought in California, 

despite all other contemporary predictions indicating high precipitation and 

recovering drought.  It is among the rare few who were able to see it coming.

• The projections on PZI have been confirmed for newly released data for Mar 16 –

Jun 16.

• Recurrent Neural Networks show promise for modeling dynamical processes in 

atmospheric sciences, despite being black boxes.

• To counter-act their black box nature, we have clues and in-roads for deciphering 

their internal mechanisms from studying internal node activations over time –

something impossible for traditional feed-forward neural networks.

• Paper containing this work is currently under review.



THANK YOU

• Special thanks to:

• Chapman University Schmid College of Science and Technology

• Asia Oceania Geosciences Society

• NOAA and the NCDC for providing the nClimDiv data set used for model training 

and validation.

• These slides available online at 
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