CU\®

Asia Oceania Geosciences Society
WWww.aslaoceania.org

FORECASTING INTERACTIONS
BETWEEN ENSO AND EXTREME
DROUGHT WITH RECURRENT NEURAL
NETWORKS

Justin LE', Hesham EL-ASKARY?
Chapman University Schmid College of Science and Technology (California, US)
AOGS 2016 (Jul 31-Aug 05), Beijing, China

ljusle@chapman.edu; 2elasakary@chapman.edu
Slides available at https://github.com/mstksg/talks/tree/master/aogs-2016



2012 CALIFORNIA DROUGHT

The 2012-present California Drought has
been the most extreme drought in the
region’s recorded history.

Short-term impacts:
Hydropower, recreation, farm yields
Long-term impacts:

Permanent groundwater loss, wildfire risk, land
elevation sinking, seawater intrusion, ecological
disruption

$2.2 billion dollars of economic loss in 2015
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Worst California droughts over last 100 years
Source: West Wide Drought Tracker
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EL NINO SOUTHERN OSCILLATION

ENSO is a global phenomenon impacting different regions in the world in
different ways.

In California (and most of the US), El Nino seasons manifest as periods of
extreme rainfall, flooding, and warm temperatures

Strong El Nino seasons bring economic damage

In 1997-1998, the US suffered $25 billion in economic loss.
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2015-2016 EL NINO SEASON

How does El Nino manifest? What did we see going into 2016?

Southern Oscillation Indicies
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LET’S GO BACK TO SUMMER 2015

Potentialraim.. L
In the weather community and popular California standstoget | shasta Lake | ]
media, the 2015-2016 El Nino Season above normal amounts ¢ MW |
. . . of rain from January to ,
was hailed as a savior to bring March 2016 because of LK€,
California out of drought. El Nifio.

With SOI (Southern Oscillation Index) | ¢hance of above
. . normal precipitation
and ONI (Oceanic Nino Index) 33% — 39%
(sl (¢]
indicated strong seasons, many 40% — 49%

forecasted extreme precipitation. B 50% — 59%
Il 60% - 69%

But what happened?

Sources; NOAA, Climate Prediction Center
@latimesgraphics

Le, J., El Askary, H., Chapman University Schmid College of Science and Technology AOGS 2016, 09 Aug., Beijing, China



WHAT HAPPENED IN CALIFORNIA
WINTER 2016-2015?

Nothing.

Well, almost nothing.

Disappointing rainfall, and one of the driest winters in California history.
Reservoirs continue to deplete

Drought outlook has not changed.

Did anyone see this coming?
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QUESTIONS

Can current Machine Learning research supervised classifiers give us any:
Predictive power on atmospheric phenomenon?

Physical insight into the phenomenon at work?

Can we apply them to projections on the California Drought!?
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ARTIFICIAL NEURAL NETWORKS

Traditionally used as “black box” models to
approximate any arbitrary function f : RY - RM

Feeds input vector RY through a series of Input Layer
parameterized linear and non-linear transformations

Gradient descent-based stochastic techniques are Hidden Layer
used to search the parameter-space for optional

configuration to approximate arbitrary functions. Output Layer

Cybenko and Hornik et. al. show that ANNs can
approximate any function to arbitrary precision.
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RECURRENT NEURAL NETWORKS

Traditional “feed-forward” neural networks can model INPUT LAYER
static functions, but in weather, we often want to model @
dynamic processes. T\‘“

HIDDEH LAYER

Recurrent neural networks are a modification to
traditional networks: instead of being parameterized
functions, they are parameterized state machines.

Input and internal state are fed through a series of @
parameterized linear and non-linear transformations to
produce “next result” and new internal state.

Gradient descent also employed to chose parameters.
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RECURRENT NEURAL NETWORKS AS
GENERATIVE MODELS

Recurrent Neural Networks have had success in modeling dynamic processes

and in generative models.

We can supply (monthly) climate indices and weather data history to the
model, and ask it to predict the next month.
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INTERNAL ACTIVATION YIELDS SYSTEM
INSIGHT
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MODEL DATA

We attempted to train the model as a purely autocorrelative model to predict the
next month of weather indices based on recent observed indices.

The prediction is then taken as “observed data” and used to forecast two months ahead.

The process is repeated to extend the model to be able to look several months into the
future.

NOAA NCDC’s nClimDiv data set for Southern California (US climate division 04-
06) was used, which provided historical data on climate and weather indices for the
previous |50 years.

After training, model is refined and input predictors are eliminated to increase
model fitness.
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PALMER Z INDEX

After investigating the success of the model based on input data, we decided to
keep only three climate indices: (normalized) Temperature, Precipitation, and

Palmer Z-Index (PZI).

Eventually, only PZI was kept.

The Palmer Z index (PZI) is an aggregate index based on monthly soil
moisture, evapotranspiration, potential run-off, and other moisture-related

indicators.
We found that the index successfully captures drought-like conditions and also

monthly precipitation.
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RESULTS (TRAINING CONVERGENCE)

Actual and Projected Climate Indices
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Model successfully converges on training data, especially for the
critical 1997-1998 El Nino season.
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STRUGGLES

The universal enemy of neural networks is overfitting,
due to the sheer number of model parameters (often in
the thousands or millions). Combatting overfitting is the
subject of much active ANN research.

We applied several techniques to mitigate overfitting,
including:

Noise injection

Stochastic gradient descent

“Dropout”-based techniques for ensemble simulation
Gradient-preserving activation functions

Eliminating predictands
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Projected vs Actual Rainfall Anomalies (25 - 5)
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Unsuccessful validation of an overfitted model
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RESULTS (VALIDATION)

Scaled PZI Anomaly
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Model validates well on a data set unseen during
training, with p value lower than one in one
million for three month ahead predictions.

Correlation is significantly higher than simple
moving-average or delay models.

In the end, the model only needed to see past
PZI to be able to succesfuly project on future
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PROJECTIONS
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Applying the model to the future, it predicts continuing drought (and, consequentially, low precipitation)
into mid 2016. Shown here is the comparison to the historic 1997-1998 El Nino Season. These projects
were made February 2016. Available data from Mar to Jun confirm these projections.
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INTERNAL NODE ACTIVATION

With RNN's, we have the privilege of being able
to “peek inside” the internal state of the
network as it processes data.

Here shown are the activations of internal
“neurons” in a trained network over time. Each
neuron models a specific aspect of the physics
the network is attempting to model, and its
roles are automatically defined through the
stochastic gradient descent.

The most obvious pattern is the redundancies
that the network builds to be robust to errors
and noise.

What do these regions of high and low
activation represent! What mysteries are
hidden in their structure! Curiosity abounds.

——
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CONCLUSIONS

The model was able to predict the dry season of continuing drought in California,
despite all other contemporary predictions indicating high precipitation and
recovering drought. It is among the rare few who were able to see it coming.

The projections on PZI| have been confirmed for newly released data for Mar 16 —
Jun 16.

Recurrent Neural Networks show promise for modeling dynamical processes in
atmospheric sciences, despite being black boxes.

To counter-act their black box nature, we have clues and in-roads for deciphering
their internal mechanisms from studying internal node activations over time —
something impossible for traditional feed-forward neural networks.

Paper containing this work is currently under review.
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