
Singletons and You

Justin Le https://blog.jle.im (justin@jle.im)

Lambdaconf 2017, May 27, 2017

Preface
Slide available at https://talks.jle.im/lambdaconf-
2017/singletons/singleton-slides.html.

GHC extensions (potentially) used:

{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeInType #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

import Data.Kind -- to get type Type = *
import Data.Singletons

https://talks.jle.im/lambdaconf-2017/singletons/singleton-slides.html
https://talks.jle.im/lambdaconf-2017/singletons/singleton-slides.html

Preface
Slide available at https://talks.jle.im/lambdaconf-
2017/singletons/singleton-slides.html.

GHC extensions (potentially) used:

{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeInType #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

import Data.Kind -- to get type Type = *
import Data.Singletons

https://talks.jle.im/lambdaconf-2017/singletons/singleton-slides.html
https://talks.jle.im/lambdaconf-2017/singletons/singleton-slides.html

Safety with Phantom Types

data DoorState = Opened | Closed | Locked
deriving (Show, Eq)

data Door (s :: DoorState) = UnsafeMkDoor

-- alternatively
data Door :: DoorState -> Type where

UnsafeMkDoor :: Door s

Other similar examples

I State machines (socket connections, file handles,
opened/closed)

I Refinement types
I “Tagged” types (santized/unsantized strings)

Phantom types in action

closeDoor :: Door 'Opened -> Door 'Closed
closeDoor UnsafeMkDoor = UnsafeMkDoor

openDoor :: Door 'Closed -> Door 'Opened
openDoor UnsafeMkDoor = UnsafeMkDoor

Phantom types in action

closeDoor :: Door 'Opened -> Door 'Closed
closeDoor UnsafeMkDoor = UnsafeMkDoor

openDoor :: Door 'Closed -> Door 'Opened
openDoor UnsafeMkDoor = UnsafeMkDoor

Phantom types in action

doorStatus :: Door s -> DoorState
doorStatus = -- ????

We have a problem.

doorStatus :: Door s -> DoorState
doorStatus UnsafeMkDoor = -- s ???

Phantom types in action

doorStatus :: Door s -> DoorState
doorStatus = -- ????

We have a problem.

doorStatus :: Door s -> DoorState
doorStatus UnsafeMkDoor = -- s ???

More Problems

initalizeDoor :: DoorStatus -> Door s
initializeDoor = \case

Opened -> UnsafeMkDoor
Closed -> UnsafeMkDoor
Locked -> UnsafeMkDoor

Neat, but does this work?

More Problems

initalizeDoor :: DoorStatus -> Door s
initializeDoor = \case

Opened -> UnsafeMkDoor
Closed -> UnsafeMkDoor
Locked -> UnsafeMkDoor

Neat, but does this work?

More Problems

ghci> :t initializeDoor Opened :: Door 'Closed
initializeDoor Opened :: Door 'Closed

Oops.

The Fundamental Issue in Haskell

I In Haskell, types only exist at compile-time. They are erased
at runtime.

I This is a good thing for performance! Types incur no runtime
overhead!

I But it makes functions like doorStatus fundamentally
unwritable without fancy typeclasses.

I . . . or does it?

The Fundamental Issue in Haskell

I In Haskell, types only exist at compile-time. They are erased
at runtime.

I This is a good thing for performance! Types incur no runtime
overhead!

I But it makes functions like doorStatus fundamentally
unwritable without fancy typeclasses.

I . . . or does it?

The Fundamental Issue in Haskell

I In Haskell, types only exist at compile-time. They are erased
at runtime.

I This is a good thing for performance! Types incur no runtime
overhead!

I But it makes functions like doorStatus fundamentally
unwritable without fancy typeclasses.

I . . . or does it?

The Fundamental Issue in Haskell

I In Haskell, types only exist at compile-time. They are erased
at runtime.

I This is a good thing for performance! Types incur no runtime
overhead!

I But it makes functions like doorStatus fundamentally
unwritable without fancy typeclasses.

I . . . or does it?

The Singleton Pattern

data SingDS :: DoorStatus -> Type where
SOpened :: SingDS 'Opened
SClosed :: SingDS 'Closed
SLocked :: SingDS 'Locked

Creates three constructors:

SOpened :: SingDS 'Opened
SClosed :: SingDS 'Closed
SLocked :: SingDS 'Locked

The Singleton Pattern

I A singleton is a type that has exactly one inhabited value.

I There is only one value of type SingDS 'Opened, and only
one value of type SingDS 'Closed.

I The constructor that a SingDS s uses reveals to us what s is.

The Singleton Pattern

I A singleton is a type that has exactly one inhabited value.
I There is only one value of type SingDS 'Opened, and only

one value of type SingDS 'Closed.

I The constructor that a SingDS s uses reveals to us what s is.

The Singleton Pattern

I A singleton is a type that has exactly one inhabited value.
I There is only one value of type SingDS 'Opened, and only

one value of type SingDS 'Closed.
I The constructor that a SingDS s uses reveals to us what s is.

The Singleton Pattern

With our new singletons, we can essentially pattern match on
types:

showSingDS :: SingDS s -> String
showSingDS = \case

SOpened -> "Opened"
SClosed -> "Closed"
SLocked -> "Locked"

Alone like this, it’s a bit boring. We didn’t need GADTs for this.

The Singleton Pattern

With our new singletons, we can essentially pattern match on
types:

showSingDS :: SingDS s -> String
showSingDS = \case

SOpened -> "Opened"
SClosed -> "Closed"
SLocked -> "Locked"

Alone like this, it’s a bit boring. We didn’t need GADTs for this.

Door Status

doorStatus' :: SingDS s -> Door s -> DoorState
doorStatus' = \case

SOpened -> _ -> "Door is opened"
SClosed -> _ -> "Door is closed"
SLocked -> _ -> "Door is locked"

I GADT-ness allows us to enforce that the s in SingDS s is the
same as the s in our Door.

I Singleton property means that SingDS s has a one-to-one
correspondence with its constructors.

I Pattern matching on that single constructor reveals to us the
type of Door.

Door Status

doorStatus' :: SingDS s -> Door s -> DoorState
doorStatus' = \case

SOpened -> _ -> "Door is opened"
SClosed -> _ -> "Door is closed"
SLocked -> _ -> "Door is locked"

I GADT-ness allows us to enforce that the s in SingDS s is the
same as the s in our Door.

I Singleton property means that SingDS s has a one-to-one
correspondence with its constructors.

I Pattern matching on that single constructor reveals to us the
type of Door.

Door Status

doorStatus' :: SingDS s -> Door s -> DoorState
doorStatus' = \case

SOpened -> _ -> "Door is opened"
SClosed -> _ -> "Door is closed"
SLocked -> _ -> "Door is locked"

I GADT-ness allows us to enforce that the s in SingDS s is the
same as the s in our Door.

I Singleton property means that SingDS s has a one-to-one
correspondence with its constructors.

I Pattern matching on that single constructor reveals to us the
type of Door.

Implicit Passing

class SingDSI s where
singDS :: SingDSI s

instance SingDSI 'Opened where
singDS = SOpened

instance SingDSI 'Closed where
singDS = SClosed

instance SingDSI 'Locked where
singDS = SLocked

doorStatus :: SingDSI s => Door s -> DoorState
doorStatus = doorStatus' singDS

ghci> doorStatus (UnsafeMkDoor :: Door 'Locked)
Door is locked!

Implicit Passing

class SingDSI s where
singDS :: SingDSI s

instance SingDSI 'Opened where
singDS = SOpened

instance SingDSI 'Closed where
singDS = SClosed

instance SingDSI 'Locked where
singDS = SLocked

doorStatus :: SingDSI s => Door s -> DoorState
doorStatus = doorStatus' singDS

ghci> doorStatus (UnsafeMkDoor :: Door 'Locked)
Door is locked!

Implicit Passing

class SingDSI s where
singDS :: SingDSI s

instance SingDSI 'Opened where
singDS = SOpened

instance SingDSI 'Closed where
singDS = SClosed

instance SingDSI 'Locked where
singDS = SLocked

doorStatus :: SingDSI s => Door s -> DoorState
doorStatus = doorStatus' singDS

ghci> doorStatus (UnsafeMkDoor :: Door 'Locked)
Door is locked!

Initialize Door

initializeDoor' :: SingDS s -> Door s
initializeDoor' _ _ = UnsafeMkDoor

ghci> :t initializeDoor' SOpened
initializeDoor SOpened :: Door 'Opened
ghci> :t initializeDoor' SClosed
initializeDoor SClosed :: Door 'Closed

Initialize Door

initializeDoor' :: SingDS s -> Door s
initializeDoor' _ _ = UnsafeMkDoor

ghci> :t initializeDoor' SOpened
initializeDoor SOpened :: Door 'Opened
ghci> :t initializeDoor' SClosed
initializeDoor SClosed :: Door 'Closed

Initialize Door

Implicit passing style:

initializeDoor :: SingDSI s => Door s
initializeDoor = initializeDoor' singDS

SingDS vs. SingDSI

I Really, SingDS s -> is the same as SingDSI s =>

I The two are the same way of providing the same information to
the compiler, and at runtime.

I We can use the two styles interchangebly.
I One is explicitly passing the type, the other is explicitly

passing the type.

SingDS vs. SingDSI

I Really, SingDS s -> is the same as SingDSI s =>
I The two are the same way of providing the same information to

the compiler, and at runtime.

I We can use the two styles interchangebly.
I One is explicitly passing the type, the other is explicitly

passing the type.

SingDS vs. SingDSI

I Really, SingDS s -> is the same as SingDSI s =>
I The two are the same way of providing the same information to

the compiler, and at runtime.
I We can use the two styles interchangebly.

I One is explicitly passing the type, the other is explicitly
passing the type.

SingDS vs. SingDSI

I Really, SingDS s -> is the same as SingDSI s =>
I The two are the same way of providing the same information to

the compiler, and at runtime.
I We can use the two styles interchangebly.
I One is explicitly passing the type, the other is explicitly

passing the type.

Ditching the phantom

Sometimes we don’t care about what the status of our door is, and
we want the type system to relax.

This is essentially the same as saying that the status of our door is a
runtime property that we do not want to (or sometimes can’t) check
at compile-time.

Ditching the phantom

Sometimes we don’t care about what the status of our door is, and
we want the type system to relax.

This is essentially the same as saying that the status of our door is a
runtime property that we do not want to (or sometimes can’t) check
at compile-time.

Ditching the phantom

data SomeDoor :: Type where
MkSomeDoor :: SingDS s => Door s -> SomeDoor

ghci> let myDoor = MkSomeDoor (initializeDoor SOpened)
ghci> :t myDoor
myDoor :: SomeDoor
ghci> case myDoor of MkSomeDoor d -> doorStatus d
Door is opened.

Ditching the phantom

data SomeDoor :: Type where
MkSomeDoor :: SingDS s => Door s -> SomeDoor

ghci> let myDoor = MkSomeDoor (initializeDoor SOpened)
ghci> :t myDoor
myDoor :: SomeDoor
ghci> case myDoor of MkSomeDoor d -> doorStatus d
Door is opened.

Runtime-deferred types

initializeSomeDoor :: DoorStatus -> SomeDoor
initializeSomeDoor = \case

Opened -> SomeDoor (initialiseDoor' SOpened)
Closed -> SomeDoor (initialiseDoor' SClosed)
Locked -> SomeDoor (initialiseDoor' SLocked)

ghci> let myDoor = initializeSomeDoor Locked
ghci> :t myDoor
myDoor :: SomeDoor
ghci> case myDoor of MkSomeDoor d -> doorStatus d
Door is locked.

Runtime-deferred types

initializeSomeDoor :: DoorStatus -> SomeDoor
initializeSomeDoor = \case

Opened -> SomeDoor (initialiseDoor' SOpened)
Closed -> SomeDoor (initialiseDoor' SClosed)
Locked -> SomeDoor (initialiseDoor' SLocked)

ghci> let myDoor = initializeSomeDoor Locked
ghci> :t myDoor
myDoor :: SomeDoor
ghci> case myDoor of MkSomeDoor d -> doorStatus d
Door is locked.

The Singletons Library

The singletons library provides a unified framework for creating and
working with singletons for different types (not just DoorStatus),
and also for functions on those types.

http://hackage.haskell.org/package/singletons

http://hackage.haskell.org/package/singletons

The singletons way

$(singletons [d|
data DoorState = Opened | Closed | Locked

deriving (Show, Eq)
|])

This creates three types and three constructors:

-- not the actual code, but essentially what happens
data Sing :: DoorState -> Type where

SOpened :: Sing 'Opened
SClosed :: Sing 'Closed
SLocked :: Sing 'Locked

Sing is a poly-kinded type constructor (family):

The singletons way

$(singletons [d|
data DoorState = Opened | Closed | Locked

deriving (Show, Eq)
|])

This creates three types and three constructors:

-- not the actual code, but essentially what happens
data Sing :: DoorState -> Type where

SOpened :: Sing 'Opened
SClosed :: Sing 'Closed
SLocked :: Sing 'Locked

Sing is a poly-kinded type constructor (family):

The singletons way

And also

instance SingI 'Opened where
sing = SOpened

instance SingI 'Closed where
sing = SClosed

instance SingI 'Locked where
sing = SLocked

(SingI is a poly-kinded typeclass)

Examples

STrue :: Sing 'True
SJust SFalse :: Sing ('Just 'True)
SOpened `SCons` SClosed `SCons` SNil :: Sing '['Opened, 'Closed]

ghci> sing :: Sing 'True'
STrue

Other stuff created from the library

Some other convenient features:

ghci> fromSing SOpened
Opened

ghci> let s = toSing Opened
ghci> :t s
s :: SomeSing DoorStatus
ghci> case s of

SomeSing SOpened -> "Opened."
SomeSing SClosed -> "SClosed."
SomeSing SLocked -> "SLocked."

Non-trivial type logic

knock :: Door s -> IO ()
knock = -- ??

We want to allow the user to knock on a closed or locked door, but
not an opened door.

We can do this simple case using pattern matching, but it’s not
always feasible or scalable. We want to define a type relationship
that can be used by potentially many functions.

Non-trivial type logic

knock :: Door s -> IO ()
knock = -- ??

We want to allow the user to knock on a closed or locked door, but
not an opened door.

We can do this simple case using pattern matching, but it’s not
always feasible or scalable. We want to define a type relationship
that can be used by potentially many functions.

Singletons to the Rescue

$(singletons [d|
canKnock :: DoorState -> Bool
canKnock Opened = False
canKnock Closed = True
canKnock Locked = True
|])

knock :: (CanKnock s ~ True) => Door s -> IO ()
knock _ = putStrLn "knock knock!"

ghci> knock (initializeDoor SOpened)
Compile Error!!!!
ghci> knock (initializeDoor SClosed)
knock knock!

Singletons to the Rescue

$(singletons [d|
canKnock :: DoorState -> Bool
canKnock Opened = False
canKnock Closed = True
canKnock Locked = True
|])

knock :: (CanKnock s ~ True) => Door s -> IO ()
knock _ = putStrLn "knock knock!"

ghci> knock (initializeDoor SOpened)
Compile Error!!!!
ghci> knock (initializeDoor SClosed)
knock knock!

Singletons to the Rescue

$(singletons [d|
canKnock :: DoorState -> Bool
canKnock Opened = False
canKnock Closed = True
canKnock Locked = True
|])

knock :: (CanKnock s ~ True) => Door s -> IO ()
knock _ = putStrLn "knock knock!"

ghci> knock (initializeDoor SOpened)
Compile Error!!!!
ghci> knock (initializeDoor SClosed)
knock knock!

Singletons to the Rescue

tryKnock' :: Sing s -> Door s -> IO ()
tryKnock' s = case sCanKnock s of

STrue -> knock
SFalse -> _ -> putStrLn "Cannot knock door!"

tryKnock :: SingI s => Door s -> IO ()
tryKnock = tryKnock' sing

ghci> tryKnock (initializeDoor SOpened)
Cannot knock door!
ghci> tryKnock (initializeDoor SClosed)
knock knock!

Singletons to the Rescue

tryKnock' :: Sing s -> Door s -> IO ()
tryKnock' s = case sCanKnock s of

STrue -> knock
SFalse -> _ -> putStrLn "Cannot knock door!"

tryKnock :: SingI s => Door s -> IO ()
tryKnock = tryKnock' sing

ghci> tryKnock (initializeDoor SOpened)
Cannot knock door!
ghci> tryKnock (initializeDoor SClosed)
knock knock!

Vectors

$(singletons [d|
data N = Z | S N
|])

data Vec :: N -> Type -> Type where
VNil :: Vec Z a
(:*) :: a -> Vec n a -> Vec (S n) a

infixr 5 :*

The Types demand it

replicateV'
:: Sing n
-> a
-> Vec n a

replicateV' = \case
SZ -> _ -> VNil
SS n -> \x -> x :* replicateV' n x

replicateV
:: SingI n
=> a
-> Vec n a

replicateV = replicateV' sing

The Types demand it

replicateV'
:: Sing n
-> a
-> Vec n a

replicateV' = \case
SZ -> _ -> VNil
SS n -> \x -> x :* replicateV' n x

replicateV
:: SingI n
=> a
-> Vec n a

replicateV = replicateV' sing

Thank you!

I Further confusion:
https://blog.jle.im/entry/verified-instances-in-haskell.html

https://blog.jle.im/entry/verified-instances-in-haskell.html

