
Practical Dependent Types: Type-Safe Neural
Networks

Justin Le https://blog.jle.im (justin@jle.im)

Lambdaconf 2017, May 27, 2017

Preface

Slide available at https://talks.jle.im/lambdaconf-2017/dependent-
types/dependent-types.html.

All code available at
https://github.com/mstksg/talks/tree/master/lambdaconf-
2017/dependent-types.

Libraries required: (available on Hackage) hmatrix, singletons,
MonadRandom. GHC 8.x assumed.

https://talks.jle.im/lambdaconf-2017/dependent-types/dependent-types.html
https://talks.jle.im/lambdaconf-2017/dependent-types/dependent-types.html
https://github.com/mstksg/talks/tree/master/lambdaconf-2017/dependent-types
https://github.com/mstksg/talks/tree/master/lambdaconf-2017/dependent-types

The Big Question

The big question of Haskell: What can types do for us?

Dependent types are simply the extension of this question, pushing
the power of types further.

The Big Question

The big question of Haskell: What can types do for us?

Dependent types are simply the extension of this question, pushing
the power of types further.

Artificial Neural Networks

Figure 1: Feed-forward ANN architecture

Parameterized functions

Each layer receives an input vector, x : Rn, and produces an output
y : Rm.

They are parameterized by a weight matrix W : Rm×n (an m × n
matrix) and a bias vector b : Rm, and the result is: (for some
activation function f)

y = f (W x + b)

A neural network would take a vector through many layers.

Parameterized functions

Each layer receives an input vector, x : Rn, and produces an output
y : Rm.

They are parameterized by a weight matrix W : Rm×n (an m × n
matrix) and a bias vector b : Rm, and the result is: (for some
activation function f)

y = f (W x + b)

A neural network would take a vector through many layers.

Networks in Haskell

data Weights = W { wBiases :: !(Vector Double) -- n
, wNodes :: !(Matrix Double) -- n x m
} -- "m to n" layer

data Network :: Type where
O :: !Weights -> Network
(:~) :: !Weights -> !Network -> Network

infixr 5 :~

A network with one input layer, two hidden layers, and one output
layer would be:

h1 :~ h2 :~ O o

Networks in Haskell

data Weights = W { wBiases :: !(Vector Double) -- n
, wNodes :: !(Matrix Double) -- n x m
} -- "m to n" layer

data Network :: Type where
O :: !Weights -> Network
(:~) :: !Weights -> !Network -> Network

infixr 5 :~

A network with one input layer, two hidden layers, and one output
layer would be:

h1 :~ h2 :~ O o

Running them

runLayer :: Weights -> Vector Double -> Vector Double
runLayer (W wB wN) v = wB + wN #> v

runNet :: Network -> Vector Double -> Vector Double
runNet (O w) !v = logistic (runLayer w v)
runNet (w :~ n') !v = let v' = logistic (runLayer w v)

in runNet n' v'

Generating them

randomWeights :: MonadRandom m => Int -> Int -> m Weights
randomWeights i o = do

seed1 :: Int <- getRandom
seed2 :: Int <- getRandom
let wB = randomVector seed1 Uniform o * 2 - 1

wN = uniformSample seed2 o (replicate i (-1, 1))
return $ W wB wN

randomNet :: MonadRandom m => Int -> [Int] -> Int -> m Network
randomNet i [] o = O <$> randomWeights i o
randomNet i (h:hs) o = (:~) <$> randomWeights i h <*> randomNet h hs o

Haskell Heart Attacks

I What if we mixed up the dimensions for randomWeights?

I What if the user mixed up the dimensions for randomWeights?
I What if layers in the network are incompatible?
I How does the user know what size vector a network expects?
I Is our runLayer and runNet implementation correct?

Haskell Heart Attacks

I What if we mixed up the dimensions for randomWeights?
I What if the user mixed up the dimensions for randomWeights?

I What if layers in the network are incompatible?
I How does the user know what size vector a network expects?
I Is our runLayer and runNet implementation correct?

Haskell Heart Attacks

I What if we mixed up the dimensions for randomWeights?
I What if the user mixed up the dimensions for randomWeights?
I What if layers in the network are incompatible?

I How does the user know what size vector a network expects?
I Is our runLayer and runNet implementation correct?

Haskell Heart Attacks

I What if we mixed up the dimensions for randomWeights?
I What if the user mixed up the dimensions for randomWeights?
I What if layers in the network are incompatible?
I How does the user know what size vector a network expects?

I Is our runLayer and runNet implementation correct?

Haskell Heart Attacks

I What if we mixed up the dimensions for randomWeights?
I What if the user mixed up the dimensions for randomWeights?
I What if layers in the network are incompatible?
I How does the user know what size vector a network expects?
I Is our runLayer and runNet implementation correct?

Backprop

train :: Double -- ˆ learning rate
-> Vector Double -- ˆ input vector
-> Vector Double -- ˆ target vector
-> Network -- ˆ network to train
-> Network

train rate x0 target = fst . go x0
where

Backprop (Outer layer)
go :: Vector Double -- ˆ input vector

-> Network -- ˆ network to train
-> (Network, Vector Double)

-- handle the output layer
go !x (O w@(W wB wN))

= let y = runLayer w x
o = logistic y
-- the gradient (how much y affects the error)
-- (logistic' is the derivative of logistic)
dEdy = logistic' y * (o - target)
-- new bias weights and node weights
wB' = wB - scale rate dEdy
wN' = wN - scale rate (dEdy `outer` x)
w' = W wB' wN'
-- bundle of derivatives for next step
dWs = tr wN #> dEdy

in (O w', dWs)

Backprop (Inner layer)

-- handle the inner layers
go !x (w@(W wB wN) :~ n)

= let y = runLayer w x
o = logistic y
-- get dWs', bundle of derivatives from rest of the net
(n', dWs') = go o n
-- the gradient (how much y affects the error)
dEdy = logistic' y * dWs'
-- new bias weights and node weights
wB' = wB - scale rate dEdy
wN' = wN - scale rate (dEdy `outer` x)
w' = W wB' wN'
-- bundle of derivatives for next step
dWs = tr wN #> dEdy

in (w' :~ n', dWs)

Compiler, O Where Art Thou?

I Haskell is all about the compiler helping guide you write your
code. But how much did the compiler help there?

I How can the “shape” of the matrices guide our programming?
I We basically rely on naming conventions to make sure we write

our code correctly.

Compiler, O Where Art Thou?

I Haskell is all about the compiler helping guide you write your
code. But how much did the compiler help there?

I How can the “shape” of the matrices guide our programming?

I We basically rely on naming conventions to make sure we write
our code correctly.

Compiler, O Where Art Thou?

I Haskell is all about the compiler helping guide you write your
code. But how much did the compiler help there?

I How can the “shape” of the matrices guide our programming?
I We basically rely on naming conventions to make sure we write

our code correctly.

Haskell Red Flags

I How many ways can we write the function and have it still
typecheck?

I How many of our functions are partial?

Haskell Red Flags

I How many ways can we write the function and have it still
typecheck?

I How many of our functions are partial?

A Typed Alternative

data Weights i o = W { wBiases :: !(R o)
, wNodes :: !(L o i)
}

An o x i layer

A Typed Alternative

From HMatrix:

R :: Nat -> Type
L :: Nat -> Nat -> Type

An R 3 is a 3-vector, an L 4 3 is a 4 x 3 matrix.

Operations are typed:

(+) :: KnownNat n => R n -> R n -> R n
(<#) :: (KnownNat m, KnownNat n) => L m n -> R n -> R m

KnownNat n lets hmatrix use the n in the type. Typed holes can
guide our development, too!

A Typed Alternative

From HMatrix:

R :: Nat -> Type
L :: Nat -> Nat -> Type

An R 3 is a 3-vector, an L 4 3 is a 4 x 3 matrix.

Operations are typed:

(+) :: KnownNat n => R n -> R n -> R n
(<#) :: (KnownNat m, KnownNat n) => L m n -> R n -> R m

KnownNat n lets hmatrix use the n in the type. Typed holes can
guide our development, too!

Data Kinds

With -XDataKinds, all values and types are lifted to types and
kinds.

In addition to the values True, False, and the type Bool, we also
have the type 'True, 'False, and the kind Bool.

In addition to : and [] and the list type, we have ': and '[] and
the list kind.

Data Kinds

With -XDataKinds, all values and types are lifted to types and
kinds.

In addition to the values True, False, and the type Bool, we also
have the type 'True, 'False, and the kind Bool.

In addition to : and [] and the list type, we have ': and '[] and
the list kind.

Data Kinds

ghci> :t True
Bool
ghci> :k 'True
Bool
ghci> :t [True, False]
[Bool]
ghci> :k '['True, 'False]
[Bool]

A Typed Alternative
data Network :: Nat -> [Nat] -> Nat -> Type where

O :: !(Weights i o)
-> Network i '[] o

(:~) :: KnownNat h
=> !(Weights i h)
-> !(Network h hs o)
-> Network i (h ': hs) o

infixr 5 :~

h1 :: Weight 10 8
h2 :: Weight 8 5
o :: Weight 5 2

O o :: Network 5 '[] 2
h2 :~ O o :: Network 8 '[5] 2

h1 :~ h2 :~ O o :: Network 10 '[8, 5] 2
h2 :~ h1 :~ O o -- type error

A Typed Alternative
data Network :: Nat -> [Nat] -> Nat -> Type where

O :: !(Weights i o)
-> Network i '[] o

(:~) :: KnownNat h
=> !(Weights i h)
-> !(Network h hs o)
-> Network i (h ': hs) o

infixr 5 :~

h1 :: Weight 10 8
h2 :: Weight 8 5
o :: Weight 5 2

O o :: Network 5 '[] 2
h2 :~ O o :: Network 8 '[5] 2

h1 :~ h2 :~ O o :: Network 10 '[8, 5] 2
h2 :~ h1 :~ O o -- type error

Running

runLayer :: (KnownNat i, KnownNat o)
=> Weights i o
-> R i
-> R o

runLayer (W wB wN) v = wB + wN #> v

runNet :: (KnownNat i, KnownNat o)
=> Network i hs o
-> R i
-> R o

runNet (O w) !v = logistic (runLayer w v)
runNet (w :~ n') !v = let v' = logistic (runLayer w v)

in runNet n' v'

Exactly the same! No loss in expressivity!

Running

Much better! Matrices and vector lengths are guaranteed to line up!

Generating

randomWeights :: (MonadRandom m, KnownNat i, KnownNat o)
=> m (Weights i o)

randomWeights = do
s1 :: Int <- getRandom
s2 :: Int <- getRandom
let wB = randomVector s1 Uniform * 2 - 1

wN = uniformSample s2 (-1) 1
return $ W wB wN

No need for explicit arguments! User can demand i and o. No
reliance on documentation and parameter orders.

Generating

But, for generating nets, we have a problem:

randomNet :: forall m i hs o. (MonadRandom m, KnownNat i, KnownNat o)
=> m (Network i hs o)

randomNet = case hs of [] -> ??

Pattern matching on types

The solution for pattern matching on types: singletons.

-- (not the actual impelentation)

data Sing :: Bool -> Type where
SFalse :: Sing 'False
STrue :: Sing 'True

data Sing :: [k] -> Type where
SNil :: Sing '[]
SCons :: Sing x -> Sing xs -> Sing (x ': xs)

data Sing :: Nat -> Type where
SNat :: KnownNat n => Sing n

Pattern matching on types

ghci> :t SFalse
Sing 'False
ghci> :t STrue `SCons` (SFalse `SCons` SNil)
Sing '[True, False]
ghci> :t SNat @1 `SCons` (SNat @2 `SCons` SNil)
Sing '[1, 2]

Random networks

randomNet' :: forall m i hs o. (MonadRandom m, KnownNat i, KnownNat o)
=> Sing hs -> m (Network i hs o)

randomNet' = \case
SNil -> O <$> randomWeights
SNat `SCons` ss -> (:~) <$> randomWeights <*> randomNet' ss

Implicit passing

Explicitly passing singletons can be ugly.

class SingI x where
sing :: Sing x

We can now recover the expressivity of the original function, and
gain demand-driven shapes.

randomNet :: forall m i hs o. (MonadRandom m, KnownNat i, SingI hs, KnownNat o)
=> m (Network i hs o)

randomNet = randomNet' sing

Implicit passing

Explicitly passing singletons can be ugly.

class SingI x where
sing :: Sing x

We can now recover the expressivity of the original function, and
gain demand-driven shapes.

randomNet :: forall m i hs o. (MonadRandom m, KnownNat i, SingI hs, KnownNat o)
=> m (Network i hs o)

randomNet = randomNet' sing

Implicit passing

Explicitly passing singletons can be ugly.

class SingI x where
sing :: Sing x

We can now recover the expressivity of the original function, and
gain demand-driven shapes.

randomNet :: forall m i hs o. (MonadRandom m, KnownNat i, SingI hs, KnownNat o)
=> m (Network i hs o)

randomNet = randomNet' sing

Backprop

train :: forall i hs o. (KnownNat i, KnownNat o)
=> Double -- ˆ learning rate
-> R i -- ˆ input vector
-> R o -- ˆ target vector
-> Network i hs o -- ˆ network to train
-> Network i hs o

train rate x0 target = fst . go x0

Ready for this?

Backprop

train :: forall i hs o. (KnownNat i, KnownNat o)
=> Double -- ˆ learning rate
-> R i -- ˆ input vector
-> R o -- ˆ target vector
-> Network i hs o -- ˆ network to train
-> Network i hs o

train rate x0 target = fst . go x0

Ready for this?

Backprop
go :: forall j js. KnownNat j

=> R j -- ˆ input vector
-> Network j js o -- ˆ network to train
-> (Network j js o, R j)

-- handle the output layer
go !x (O w@(W wB wN))

= let y = runLayer w x
o = logistic y
-- the gradient (how much y affects the error)
-- (logistic' is the derivative of logistic)
dEdy = logistic' y * (o - target)
-- new bias weights and node weights
wB' = wB - konst rate * dEdy
wN' = wN - konst rate * (dEdy `outer` x)
w' = W wB' wN'
-- bundle of derivatives for next step
dWs = tr wN #> dEdy

in (O w', dWs)
-- handle the inner layers
go !x (w@(W wB wN) :~ n)

= let y = runLayer w x
o = logistic y
-- get dWs', bundle of derivatives from rest of the net
(n', dWs') = go o n
-- the gradient (how much y affects the error)
dEdy = logistic' y * dWs'
-- new bias weights and node weights
wB' = wB - konst rate * dEdy
wN' = wN - konst rate * (dEdy `outer` x)
w' = W wB' wN'
-- bundle of derivatives for next step
dWs = tr wN #> dEdy

in (w' :~ n', dWs)

Backprop
-- handle the inner layers
go !x (w@(W wB wN) :~ n)

= let y = runLayer w x
o = logistic y
-- get dWs', bundle of derivatives from rest of the net
(n', dWs') = go o n
-- the gradient (how much y affects the error)
dEdy = logistic' y * dWs'
-- new bias weights and node weights
wB' = wB - konst rate * dEdy
wN' = wN - konst rate * (dEdy `outer` x)
w' = W wB' wN'
-- bundle of derivatives for next step
dWs = tr wN #> dEdy

in (w' :~ n', dWs)

Surprise! It’s actually identical! No loss in expressivity. Typed holes
can write our code for us in many cases. And shapes are all verified.

Type-Driven Development

We wrote an untyped implementation, then realized what was
wrong. Then we added types, and everything is great!

Further reading

I Blog series: https://blog.jle.im/entries/series/+practical-
dependent-types-in-haskell.html

I Extra resources:
I https://www.youtube.com/watch?v=rhWMhTjQzsU
I http://www.well-typed.com/blog/2015/11/implementing-a-

minimal-version-of-haskell-servant/
I https://www.schoolofhaskell.com/user/konn/prove-your-

haskell-for-great-safety
I http://jozefg.bitbucket.org/posts/2014-08-25-dep-types-part-

1.html

https://blog.jle.im/entries/series/+practical-dependent-types-in-haskell.html
https://blog.jle.im/entries/series/+practical-dependent-types-in-haskell.html
https://www.youtube.com/watch?v=rhWMhTjQzsU
http://www.well-typed.com/blog/2015/11/implementing-a-minimal-version-of-haskell-servant/
http://www.well-typed.com/blog/2015/11/implementing-a-minimal-version-of-haskell-servant/
https://www.schoolofhaskell.com/user/konn/prove-your-haskell-for-great-safety
https://www.schoolofhaskell.com/user/konn/prove-your-haskell-for-great-safety
http://jozefg.bitbucket.org/posts/2014-08-25-dep-types-part-1.html
http://jozefg.bitbucket.org/posts/2014-08-25-dep-types-part-1.html

